2,142 research outputs found

    Bayesian subset simulation

    Full text link
    We consider the problem of estimating a probability of failure α\alpha, defined as the volume of the excursion set of a function f:X⊆Rd→Rf:\mathbb{X} \subseteq \mathbb{R}^{d} \to \mathbb{R} above a given threshold, under a given probability measure on X\mathbb{X}. In this article, we combine the popular subset simulation algorithm (Au and Beck, Probab. Eng. Mech. 2001) and our sequential Bayesian approach for the estimation of a probability of failure (Bect, Ginsbourger, Li, Picheny and Vazquez, Stat. Comput. 2012). This makes it possible to estimate α\alpha when the number of evaluations of ff is very limited and α\alpha is very small. The resulting algorithm is called Bayesian subset simulation (BSS). A key idea, as in the subset simulation algorithm, is to estimate the probabilities of a sequence of excursion sets of ff above intermediate thresholds, using a sequential Monte Carlo (SMC) approach. A Gaussian process prior on ff is used to define the sequence of densities targeted by the SMC algorithm, and drive the selection of evaluation points of ff to estimate the intermediate probabilities. Adaptive procedures are proposed to determine the intermediate thresholds and the number of evaluations to be carried out at each stage of the algorithm. Numerical experiments illustrate that BSS achieves significant savings in the number of function evaluations with respect to other Monte Carlo approaches

    Bayesian Subset Simulation: a kriging-based subset simulation algorithm for the estimation of small probabilities of failure

    Full text link
    The estimation of small probabilities of failure from computer simulations is a classical problem in engineering, and the Subset Simulation algorithm proposed by Au & Beck (Prob. Eng. Mech., 2001) has become one of the most popular method to solve it. Subset simulation has been shown to provide significant savings in the number of simulations to achieve a given accuracy of estimation, with respect to many other Monte Carlo approaches. The number of simulations remains still quite high however, and this method can be impractical for applications where an expensive-to-evaluate computer model is involved. We propose a new algorithm, called Bayesian Subset Simulation, that takes the best from the Subset Simulation algorithm and from sequential Bayesian methods based on kriging (also known as Gaussian process modeling). The performance of this new algorithm is illustrated using a test case from the literature. We are able to report promising results. In addition, we provide a numerical study of the statistical properties of the estimator.Comment: 11th International Probabilistic Assessment and Management Conference (PSAM11) and The Annual European Safety and Reliability Conference (ESREL 2012), Helsinki : Finland (2012

    A Bayesian approach to constrained single- and multi-objective optimization

    Get PDF
    This article addresses the problem of derivative-free (single- or multi-objective) optimization subject to multiple inequality constraints. Both the objective and constraint functions are assumed to be smooth, non-linear and expensive to evaluate. As a consequence, the number of evaluations that can be used to carry out the optimization is very limited, as in complex industrial design optimization problems. The method we propose to overcome this difficulty has its roots in both the Bayesian and the multi-objective optimization literatures. More specifically, an extended domination rule is used to handle objectives and constraints in a unified way, and a corresponding expected hyper-volume improvement sampling criterion is proposed. This new criterion is naturally adapted to the search of a feasible point when none is available, and reduces to existing Bayesian sampling criteria---the classical Expected Improvement (EI) criterion and some of its constrained/multi-objective extensions---as soon as at least one feasible point is available. The calculation and optimization of the criterion are performed using Sequential Monte Carlo techniques. In particular, an algorithm similar to the subset simulation method, which is well known in the field of structural reliability, is used to estimate the criterion. The method, which we call BMOO (for Bayesian Multi-Objective Optimization), is compared to state-of-the-art algorithms for single- and multi-objective constrained optimization

    Estimating derivatives and integrals with Kriging

    No full text
    International audienceThis paper formalizes a methodology based on Kriging, a technique developped by geostatisticians, for estimating derivatives and integrals of signals that are only known via possibly irregularly spaced and noisy observations. This finds direct applications, e.g., in system identification when differential algebra is used to express parameters as nonlinear functions of the inputs and outputs and their derivatives. The procedure is quite simple to implement, and allows confidence intervals on the predicted values to be derived

    Identification boîte noire et simulation de systèmes non-linéaires à temps continu par prédiction linéaire de processus aléatoires

    No full text
    Cet article propose des méthodes de prédiction linéaire de processus aléatoires pour l'identification boîte noire et la simulation de systèmes dynamiques non-linéaires à temps continu. La méthode d'identification proposée utilise des observations bruitées du vecteur d'état à des instants quelconques. Elle comporte deux étapes distinctes. La première est l'estimation des dérivées temporelles de l'état et la deuxième est l'approximation du champ de vecteurs gouvernant la dynamique. Pour la simulation du système, nous proposons un nouveau schéma d'intégration numérique permettant de prendre en compte de manière consistante l'erreur d'approximation du champ de vecteur

    Gaussian process modeling for stochastic multi-fidelity simulators, with application to fire safety

    Full text link
    To assess the possibility of evacuating a building in case of a fire, a standard method consists in simulating the propagation of fire, using finite difference methods and takes into account the random behavior of the fire, so that the result of a simulation is non-deterministic. The mesh fineness tunes the quality of the numerical model, and its computational cost. Depending on the mesh fineness, one simulation can last anywhere from a few minutes to several weeks. In this article, we focus on predicting the behavior of the fire simulator at fine meshes, using cheaper results, at coarser meshes. In the literature of the design and analysis of computer experiments, such a problem is referred to as multi-fidelity prediction. Our contribution is to extend to the case of stochastic simulators the Bayesian multi-fidelity model proposed by Picheny and Ginsbourger (2013) and Tuo et al. (2014)

    Sequential search based on kriging: convergence analysis of some algorithms

    Full text link
    Let \FF be a set of real-valued functions on a set \XX and let S:\FF \to \GG be an arbitrary mapping. We consider the problem of making inference about S(f)S(f), with f\in\FF unknown, from a finite set of pointwise evaluations of ff. We are mainly interested in the problems of approximation and optimization. In this article, we make a brief review of results concerning average error bounds of Bayesian search methods that use a random process prior about ff

    The Informational Approach to Global Optimization in presence of very noisy evaluation results. Application to the optimization of renewable energy integration strategies

    Full text link
    We consider the problem of global optimization of a function f from very noisy evaluations. We adopt a Bayesian sequential approach: evaluation points are chosen so as to reduce the uncertainty about the position of the global optimum of f, as measured by the entropy of the corresponding random variable (Informational Approach to Global Optimization, Villemonteix et al., 2009). When evaluations are very noisy, the error coming from the estimation of the entropy using conditional simulations becomes non negligible compared to its variations on the input domain. We propose a solution to this problem by choosing evaluation points as if several evaluations were going to be made at these points. The method is applied to the optimization of a strategy for the integration of renewable energies into an electrical distribution network

    An informational approach to the global optimization of expensive-to-evaluate functions

    Full text link
    In many global optimization problems motivated by engineering applications, the number of function evaluations is severely limited by time or cost. To ensure that each evaluation contributes to the localization of good candidates for the role of global minimizer, a sequential choice of evaluation points is usually carried out. In particular, when Kriging is used to interpolate past evaluations, the uncertainty associated with the lack of information on the function can be expressed and used to compute a number of criteria accounting for the interest of an additional evaluation at any given point. This paper introduces minimizer entropy as a new Kriging-based criterion for the sequential choice of points at which the function should be evaluated. Based on \emph{stepwise uncertainty reduction}, it accounts for the informational gain on the minimizer expected from a new evaluation. The criterion is approximated using conditional simulations of the Gaussian process model behind Kriging, and then inserted into an algorithm similar in spirit to the \emph{Efficient Global Optimization} (EGO) algorithm. An empirical comparison is carried out between our criterion and \emph{expected improvement}, one of the reference criteria in the literature. Experimental results indicate major evaluation savings over EGO. Finally, the method, which we call IAGO (for Informational Approach to Global Optimization) is extended to robust optimization problems, where both the factors to be tuned and the function evaluations are corrupted by noise.Comment: Accepted for publication in the Journal of Global Optimization (This is the revised version, with additional details on computational problems, and some grammatical changes
    • …
    corecore